Pre-processing
These functions perform pre-processing steps on the raw data.
rename_columns
Rename the columns so that they have computer names as defined in the given data dictionary.
Tip
Renaming the columns should always be the first pre-processing step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
pandas DataFrame
|
The pandas DataFrame. |
required |
df_data_dictionary |
pandas DataFrame
|
DataFrame with data dictionary information. It should have at least the following columns:
|
required |
verbose |
bool
|
Define if verbose output will be printed ( |
True
|
Returns:
Name | Type | Description |
---|---|---|
df_renamed |
pandas DataFrame
|
Same as input |
Source code in pycelldyn/preprocessing.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
clean_dataframe
Clean categorical and numerical columns of a Sapphire or Alinity DataFrame.
Info
To identify what type a column is, this function uses information from the given data dictionary:
- Numerical columns are those that have a
Type
ofint
,float
, orint (scientific notation)
. - Categorical columns are those that have a
Type
ofstr
. - Columns that fall outside of these types remain unchanged.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
pandas DataFrame
|
The pandas DataFrame. |
required |
df_data_dictionary |
pandas DataFrame
|
DataFrame with data dictionary information. It should have at least the following columns:
|
required |
cols |
list of str
|
List with the columns to be cleaned. If |
None
|
verbose |
bool
|
Define if verbose output will be printed ( |
True
|
Returns:
Name | Type | Description |
---|---|---|
df_clean |
pandas DataFrame
|
Clean DataFrame. |
Source code in pycelldyn/preprocessing.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
clean_column_numerical
Clean a numerical column. It applies the following steps:
- Convert empty spaces (i.e.,
' '
) toNaN
s. - Convert weird entries with a value of
\xa0
toNaN
s. - Convert entries with a value of
'nan'
toNaN
s. - Cast to float to ensure that values will be numbers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
pandas DataFrame
|
The pandas DataFrame.s |
required |
col |
string
|
Name of the numerical column to be cleaned. |
required |
Returns:
Name | Type | Description |
---|---|---|
col_clean |
pandas Series
|
The clean (numerical) column. |
Source code in pycelldyn/preprocessing.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
clean_column_categorical
Clean a categorical column. It applies the following steps:
- Make strings lower case
- Remove leading spaces
- Remove trailing spaces
- Convert weird entries with a value of
\xa0
toNaN
s.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
pandas DataFrame
|
The pandas DataFrame. |
required |
col |
str
|
Name of the categorical column to be cleaned. |
required |
Returns:
Name | Type | Description |
---|---|---|
col_clean |
pandas Series
|
The clean (categorical) column. |
Source code in pycelldyn/preprocessing.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|